Chaoticity Properties of Fractionally Integrated Generalized Autoregressive Conditional Heteroskedastic Processes
نویسندگان
چکیده
منابع مشابه
Variational Bayesian Autoregressive Conditional Heteroskedastic Models
A variational Bayesian autoregressive conditional heteroskedastic (VB-ARCH) model is presented. The ARCH class of models is one of the most popular for economic time series modeling. It assumes that the variance of the time series is an autoregressive process. The variational Bayesian approach results in an approximation to the full posterior distribution over ARCH model parameters, and provide...
متن کاملOn continuous-time autoregressive fractionally integrated moving average processes
In this paper, we consider a continuous-time autoregressive fractionally integrated moving average (CARFIMA) model, which is defined as the stationary solution of a stochastic differential equation driven by a standard fractional Brownian motion. Like the discrete-time ARFIMA model, the CARFIMA model is useful for studying time series with short memory, long memory and antipersistence. We inves...
متن کاملGeneralized Autoregressive Conditional Heteroskedasticity
A natural generalization of the ARCH (Autoregressive Conditional Heteroskedastic) process introduced in Engle (1982) to allow for past conditional variances in the current conditional variance equation is proposed. Stationarity conditions and autocorrelation structure for this new class of parametric models are derived. Maximum likelihood estimation and testing are also considered. Finally an e...
متن کاملConditional Autoregressive Hilbertian processes
When considering the problem of forecasting a continuous-time stochastic process over an entire time-interval in terms of its recent past, the notion of Autoregressive Hilbert space processes (arh) arises. This model can be seen as a generalization of the classical autoregressive processes to Hilbert space valued random variables. Its estimation presents several challenges that were addressed b...
متن کاملRobust Estimation of Nonstationary, Fractionally Integrated, Autoregressive, Stochastic Volatility
Empirical volatility studies have discovered nonstationary, long-memory dynamics in the volatility of the stock market and foreign exchange rates. This highly persistent, infinite variance—but still mean reverting—behavior is commonly found with nonparametric estimates of the fractional differencing parameter d, for financial volatility. In this paper, a fully parametric Bayesian estimator, rob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of Mathematical Sciences and Applications
سال: 2016
ISSN: 2278-9634
DOI: 10.18052/www.scipress.com/bmsa.15.69